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We present theoretical studies of the electromagnetic response of metallic nanosphere pairs, with emphasis
on the role of their collective plasmon resonances in enhancing electromagnetic fields in their near vicinity, and
also in enhancing laser-induced forces between the particles. We emphasize effects encountered when the two
particles have dissimilar radii or are fabricated from dissimilar materials. The calculations explore the response
of the particles to electric fields polarized parallel and perpendicular to the line between their centers. We find,
compared to two identical spheres, that on resonance, both the maximum enhancement in the electric fields and
the laser-induced force are increased when the radii differ. Also, there is a breakdown of the selection rule
associated with reflection symmetry through the plane which passes through the midpoint of the line between
centers. A result is that all collective modes are dipole active when the spheres are dissimilar, for electric fields
both parallel to and perpendicular to the line between the sphere centers. Our analysis exploits the electrostatic
approximation appropriate to nanoscale objects but is exact within this framework without resort to a dipole

approximation.

DOI: 10.1103/PhysRevB.77.045416

I. INTRODUCTION

For a very long time, the study of the dynamic response of
ever smaller entities has been an active area of experimental
and theoretical research. One encounters new physics as the
linear dimensions of objects studied approach nanoscales or
even atomic dimensions, and new applications of such very
small scale structures can have a dramatic impact on tech-
nology.

Linear and nonlinear optical spectroscopies are actively
exploited to study very small entities. Over 30 years ago, the
discovery of surface enhanced Raman scattering,! (SERS)
opened up the spectroscopy of submonolayer quantities of
molecules in the electrochemical environment. Rather soon
after the discovery of these dramatic enhancements of the
Raman cross sections, it became apparent that a crucial issue
is the local enhancement of electromagnetic fields through
coupling of both the incident and scattered photon either to
localized plasmons associated with large structures on the
surface or to surface polaritons on samples that may be
viewed as somewhat roughened.” It also became apparent®*
that the electromagnetic enhancement effects were supple-
mented by substantial increases in the Raman cross section
of molecules adsorbed on metal surfaces, through charge
transfer excitations absent when the molecule is in the gas or
liquid phase. It remains the case to the present that in a
specific measurement, it is difficult to disentangle electro-
magnetic enhancement effects from those associated with
possibly substantial increases in the Raman cross section of
the adsorbed species itself. We note an elegant experiment in
which it proved possible to separate these two effects in a
fully unambiguous manner.’

In the early generation of experiments just discussed,
quantitative theoretical descriptions of SERS were severely
handicapped by the poorly characterized adsorption geom-
etries in virtually all of the experiments. Strongly enhanced
Raman signals were found not only on roughened metal sur-
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faces but for molecules adsorbed on nanoscale metallic par-
ticles as well. In the latter case, laser excitation of the Mie
resonance, viewed currently as a collective plasmon mode of
the nanoparticle, is responsible for the field enhancements
which boost the cross section. Measurements explored sig-
nals from ensembles of nanoparticles with a distribution of
size and shape; so again, at the microscopic level, the nature
of the adsorption sites wherein very strong enhancements
were realized could be only inferred indirectly.

In recent years, there have been remarkable advances in
sample preparation that take us into a regime where key el-
ements of the sample geometry are quite well understood.
For instance, signals from selected individual nanoparticles
have been reported, under conditions where the nanoparticle
contained only a single adsorbed molecule.® Measurements
on ensembles suggested that there were “hot spots” associ-
ated with pairs of nanoparticles located very close to each
other wherein the field enhancements were much larger than
realized for isolated nanoparticles. Through use of a micro-
manipulator, it has proved possible to study Raman signals
from selected Ag nanoparticle pairs.” Collective plasmon
resonances of selected Au particles have been studied as well
as a function of separation of the particles.® The collective
plasmon resonances of more complex structures synthesized
in the laboratory have also appeared.’

It should be remarked that it is not uncommon to analyze
data taken on nanosphere pairs or collections of nanospheres
through use of a simple model where intersphere interactions
are viewed simply as dipole-dipole interactions.®® Such a
simple model is valid only when the intersphere separation is
large compared to their diameters. When the spheres are
close together, so the distance between the adjacent poles of
nearby spheres is small compared to their diameter, the di-
pole model breaks down qualitatively, and it is necessary to
utilize a theory which takes full account of the many multi-
poles associated with the charge motions present in indi-
vidual spheres when the plasmon collective modes are ex-

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.77.045416

PING CHU AND D. L. MILLS

cited. We note that a rather simple theoretical formulation of
the collective excitations of nanosphere arrays is available,
which is exact in the electrostatic limit appropriate to par-
ticles of nanoscale size.'® With this formalism, it is quite
straightforward to describe the collective plasmon excita-
tions of diverse structures, with all multipoles included fully.
The calculations reported in Ref. 10 illustrated excellent con-
vergence, down to the point where adjacent spheres touch.

It is desirable to use various probes, such as the tip of a
scanning tunneling microscope (STM), as a means of en-
hancing linear and nonlinear optical interactions of laser
probes with a single molecule under the tip. Here, large field
enhancements can be realized through excitation of the col-
lective surface plasmons of the tip-substrate combination.!!
In a recent experiment, sub angstrom resolution has been
achieved in an optical experiment which probes a single mol-
ecule under an STM tip.'? It is evident, when signal levels
obtained through use of a Ag coated tip with those present
when a W tip is used, that plasmon enhancement effects
similar to those explored in Ref. 11 are present. Plasmon
resonances also allow single trapped nanoparticles to act as
near field optical probes; enhanced fields in their near vicin-
ity allow them to act as optical tweezers.!?

We are thus now into a most fascinating era where one
may study the collective plasmon resonances of individual
nanoparticles, pairs, and other very small scale structures and
one may then exploit the presence of the associated resonant
response to the point where single molecules may be studied
by various forms of optical spectroscopy. This motivates the-
oretical studies of collective plasmons in diverse nanostruc-
tures and their influence on optical interactions with them.

The present paper is devoted to theoretical studies of the
optical response of pairs of metallic nanospheres, with em-
phasis on the case where the spheres are dissimilar, either
because their radii are different or they are synthesized from
different materials. The special case of a sphere in the near
vicinity of a flat surface, explored in earlier work,'' emerges
as the limit when the radius of one sphere in the pair is
allowed to become infinite. We explore the nature of the
collective plasmon resonances of such a two-sphere system,
the enhanced fields in their vicinity in response to laser ex-
citation of the resonance modes, and also the laser-induced
force between such entities. This is done within the frame-
work of the electrostatic approximation. Through resorting to
an analysis in bispherical coordinates, we present an exact
solution of the problem, with all multipoles included in the
description of the response. As remarked earlier, the fre-
quently used dipole-dipole interaction picture breaks down
badly when the spheres are close together. It is well known
that in the electrostatic limit, the dipole-dipole interaction
picture is valid only when the separation between the spheres
is large compared to their radii.

We find interesting differences in the response of the two-
sphere system when the spheres are dissimilar, compared to
the special case of two identical spheres. In the latter case,
the electrostatic potential has reflection symmetry through a
plane perpendicular to the line between the sphere centers,
and which passes through the midpoint of this line. The col-
lective modes can then be classified by the symmetry of their
electrostatic potential under reflection through this plane.
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The modes for which this potential is odd are excited by a
laser field parallel to the line between the midpoints and
“silent” in response to a field normal to this line. The con-
verse is true for modes whose electrostatic potential is even
under this reflection. When the spheres are dissimilar, the
selection rule breaks down and all collective modes are ex-
cited by the laser field. We explore field enhancement effects
for this circumstance, along with the magnitude of laser-
induced forces between the entities. In an earlier paper,'* we
have presented a limited summary of calculations such as
these, and length limitations prohibited a presentation of our
extension of the application of bispherical coordinates to the
discussion of dissimilar sphere pairs, which has been used
for a number of years,15 to the case where the spheres are
identical.

The outline of this paper is as follows. In Sec. II, we
present a brief summary of the formalism we have utilized.
Section IIT presents a number of numerical results, and con-
cluding remarks are found in Sec. I'V.

II. STRUCTURE OF THE THEORY

As remarked in Sec. I, our analysis will be carried out
within the framework of the electrostatic description of the
electric fields in the vicinity of the nanosphere pair. This
treatment will prove accurate if the radii of the two spheres
are both small compared to the wavelength of the laser ra-
diation which illuminates them. In this limit, the incident
laser field may be viewed as a spatially uniform driving field,
with frequency w. Thus, the problem we address is the re-
sponse of two dielectric spheres, one with radius R; and
complex dielectric constant &,(w) and the second with radius
R, and complex dielectric constant &,(w) exposed to a spa-
tially uniform electric field. With the thought that the spheres
may be embedded in a medium such as a liquid, we assume
that outside the spheres the dielectric constant is g, every-
where.

The problem just described may be solved exactly, with-
out resort to approximation, through use of bispherical coor-
dinates. In this coordinate system, a point in space is de-
scribed by three coordinates (83, a, ¢). The azimuthal angle ¢
is familiar from cylindrical coordinates. The relationship be-
tween the Cartesian coordinates (x,y,z) and the bispherical
coordinates is given by

¢ sin & cos ¢

X=——"—"—"- (la)

- )
cosh B—cos

¢ sin a sin @
=, 1b
Y cosh B—cos «a (15)

and

¢ sinh B
4 T — (1c)
cosh 8—cos «
What is important for our present purposes is that surfaces of
constant S are spheres, with the xy plane described by S
=0. All points with >0 lie in the upper half space z>0,
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FIG. 1. The geometry considered in the present paper, as de-
scribed in bispherical coordinates. See the text for a definition of the
quantities illustrated in the figure.

and all points with <0 lie in the lower half space z<<0. If
p=(x>+y?)""? is the radial coordinate of a spherical coordi-
nate system, then surfaces of constant S are given by

p*+ (z—c coth B)? = ¢%/(sinh B)>. (2)

The parameter ¢, chosen as described below, is a parameter
which enters the transformation which may be chosen at
one’s convenience. The reader will find an introduction to
bispherical coordinates in the Appendix of the paper cited
first in Ref. 11. [Note that there is a typographical error in
Eq. (A3) of this reference. The right hand side should read
c?/sin’ a.]

In Fig. 1, we show the geometry explored in the present
paper, as described by bispherical coordinates. We have a
sphere of radius R; located the distance d; above the xy
plane and a sphere of radius R, located the distance d, below
the xy plane. The distance between the south pole of the
upper sphere and the north pole of the lower sphere is thus
D=d,+d,. In bispherical coordinates, the equation of the up-
per sphere is 8=, and the equation of the lower sphere is
B=-p,, where we have

d, i d, 2 12
Bi=Iny1+—+ <1+—> -1 , (3a)
: Ry | R, i

d i d, \2 112
,32=1n{1+_2+ <1+—2> ~1] . (3b)
R, | R, i

and

The interior of the upper sphere is the region 8> B3, while
the interior of the lower sphere is 8<—f3,, as illustrated in
the figure. We also have the following relationships:

D?+2R,D
iy — (4a)
2(D+R,+R,)
D?*+2R,D
i ——— (4b)
2(D+R,+R,)

and
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c=\d,(d, +2R,) = dy(d, + 2R,). (4c)

Notice that we also have the relation d2=yR§+df+2R1dl
—R,.

We shall denote the electrostatic potential by ®(B, «, ¢).
In bispherical coordinates, the components of the electric
field are then given by

1 0d
Eg=-—1>, (5a)
hg B
1 od
=———, 5b
= da (5b)
and
1 od
o= T (SC)
hy dp

where hg=h,=c/(cosh B—cos @) and h,=c sin a/(cosh 3
—Cos ).

Our goal is then to solve Laplace’s equation
V[e(x,w) VP]=0 everywhere, subject to the boundary con-
dition that very far from the two spheres, we have a spatially
uniform electric field oriented appropriately. We consider
first the case where the external field is parallel to the line
between the center of the spheres (z polarized), and then we
turn to the case where it is parallel to the xy plane, perpen-
dicular to the axis of symmetry (x polarized).

A. Case where the external field is parallel to the axis of
symmetry

In bispherical coordinates, one writes the electrostatic po-
tential in the form

®(B,a, @) =[2(cosh B—cos a)]"*¥(B,a, ¢). (6)

When the form in Eq. (6) is inserted into Laplace’s equation,
then the equation for the function W admits separable solu-
tions of the form exp[=(/+1/2)B]P]'(cos a)exp(imep). We
can then write the electrostatic potential in the form

CI)(B’ a, (P) = (I)ext(ﬂ’ a, (P) + 5(1)(5, a, (P)
= [Z(COSh ﬁ — COS a)]llz[qjext(ﬁ’ a, QD)
+ V(B a.@)]. (7)

Here, ®,,, is the electrostatic potential for the external laser
field, once again assumed spatially uniform in the vicinity of
the nanospheres, and 6P is used to describe the electric
fields associated with the response of the nanospheres. For
the case under consideration, ®,,=—Ez, and one may show
that

\Pext: - Sgn(ﬁ)Eocz (2l+ 1)eXP[_ (l + %)|B|:|PI(COS a)’
=0
(8)

where P;(cos a@)=P!(cos a) is the Legendre polynomial.

We use the separable solutions described above to gener-
ate series descriptions of the electrostatic potential in the
various spatial domains:
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v=2 A" exp{— (H%)(ﬁ—ﬁl)}l’z(cos ) for B>,
(9a)

. 1
V=", + > {AEZ) exp{ <l + 5),8] + B;z)

=0

Xexp[— (l+ %)B}}Pl(cos a) for =B, < B<p,
(9b)

and

v=>AP exp[<l+ %)(m ﬁz)]Pl(cos a) for B<-P,.

1=0
(9¢)

The boundary conditions are that the electrostatic potential
must be continuous at the surface of each of the two spheres,

and then the normal component of D is conserved as well.
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The latter condition is obeyed if one conserves the combina-
tion &(w)d®/dB at the surface of each sphere.

When the forms in Egs. (9a)—(9c) are submitted to the
boundary conditions, we obtain the following relations. First,
one can link the sets {A;l)} and {A§3)} to the coefficients
which appear in Eq. (9b)

AW =~ Ege(2+ 1exp[ - (1+3)8 ]+ A exp[ (1 + 1) 8]
+ B exp[- (1+3)81], (10a)

and

A;s) =Eyc(2l+ l)exp[— (l + %)62] +A§2) exp[— (l + %)32]
+ B;z) exp[(l + %),82]. (10b)

We then have a hierarchy of equations from which {Afz)} and
{Bf”} may be found:

I(e; +eo)expl (1 2) B, ]JAP, + (e, — go)sinh B — (e, + gg)cosh B, (21 + 1)exp[ (1+ ) B, JAP + (1+ 1) (g, + £9)
Xexp| (1+32)B,]A2) + i(e, - eg)exp[ - (1= 1) B, B, + (&, — £o)[sinh B, — cosh B;(21+ 1)]exp[ - (1+3) B, |BP + (1 + 1)

X(g; — so)exp[— (l + %),81]353), =2Eyc(e, — go)[— leP + (1 + 1)e‘/3']exp[— (l + %),81]

and

(11a)

l(gg - e2)exp| - (1= 2)B]A2) + [(g9 — £)[sinh B, — cosh B, (21 + 1)] exp[— (1+2) B, JA + (1 + 1)(gy - &,)
Xexp[— (l + %)ﬁZ]AEi)l —l(ey+ so)exp[(l - %)Bz]Bg +[(g9 — &,)sinh B, + (gy + £;)cosh B,(21 + l)]exp[(l + %)BZ]BEZ)

—(I+1)(ey+ so)exp[(l + %),32]353)1 =2Eqc(ey, — go)[— leP2 + (I + l)e_'gz]exp[— (l + %)ﬁz].

To obtain the relations in Egs. (11a) and (11b), one needs to
employ recurrence relations among the associated Legendre
functions. More details may be found in the discussions give
in Ref. 11.

B. Case where the external field is perpendicular to the axis of
symmetry

Now, we have ®,,,=—Fyx, and we find

- |
V,,=-2Ec>, exp[— (1+ 5)|B|}P}(COS a)cos ¢.
I=1
(12)

We proceed to expand the potential in the various regimes of
interest as follows.

For B> B4,

(11b)

v=> AW exp[— (l + %)(,B— Bl)}P}(cos a)cos @,

(13a)

for -, <B<p,

- 1
V=V, + {A§2> exp{(l + 5)3]
=1

+BY exp[— <1+ %)ﬂ} }P,‘(cos a)cos ¢, (13b)

and finally for B<-p3,,

045416-4



ELECTROMAGNETIC RESPONSE OF NANOSPHERE...

v=> Af) exp[(l + %)(,8+ Bz)}P}(cos a)cos ¢.

1=1
(13c¢)

As before, from the boundary conditions, we find the rela-
tions

AV =—2E.cexp[- (1+3)8, ]+ AP exp[ (1 + )]
+BP? exp[- (1+3)8] (142)

(14b)

Then, the set of coefficients {A;z)} and {BEZ)} are found from
the hierarchy
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FIG. 2. (Color online) For two Ag spheres, we show the fre-
quency of the lowest lying m=0 modes (solid lines) and the lowest
lying m=1 (dashed lines) modes, as a function of the separation
between the poles of the two spheres. One sphere has the radius of
30 nm, and the radius of the second sphere is indicated. The case
R, =0 refers to a sphere near a plane surface, and we also show the
position of the Mie resonance (/=1 mode) of the isolated sphere.

(L= 1)(e; +so)exp[ (1= 2) B JAZ) +[(&, — £o)sinh B; — (& + &¢)cosh By(21 + 1)]exp[ (1+ )8 ]AP + (1+2)(e; + &)
xexp[ (1+2)BJAZ) + (1= 1)(s, - s)exp|— (1= ) B, |BZ), + (s, - £o)[sinh By — cosh B, (21 + 1)]

Xexp[— (1+23)B, B + (1 +2)(s, — s)exp| - (1 +2) B, |B\) = 4Ec(s, — &¢)sinh B, exp[ - (1+ 1) ]

and

(15a)

(1= 1)(89— x)exp[ - (1= 3) B2 ]A2) + [(89 - &2)[sinh B, — cosh Bo(21 + 1)] exp[— (1 + 1) B, ]AP + (1 +2) (g - &5)
xexp[— (1+32)B2]A%, = (1= 1) (&, + g)exp| (1 - 1) B2 ]BZ) + [(89 — £2)sinh B, + (89 + &5)cosh By(21+1)]

Xexp| (1+3) BB = (1+2)(85 + o)exp| (1 +2) B,|B2) = — 4Eqc (&, — £g)sinh B, exp[— (1 + 1) s ].

The statements above allow us to calculate the electrostatic
potential for the two polarizations of the incident driving
field of interest. Of course, if one is interested in an applied
field in a general direction, one just employs the superposi-
tion principle to synthesize expressions for the response of
the spheres.

In our discussion in Sec. III, of interest will be the laser-
induced force on the pair of spheres. From considerations of
translational symmetry, and for the case where the laser field
is assumed spatially uniform in the vicinity of the spheres,
there can be no net force on the pair. Furthermore, for either
polarization, the force must be along the line of symmetry
between the spheres, and that on the upper sphere must be
equal and opposite in magnitude to the force on the lower
sphere. One finds the laser-induced force by integrating the
appropriate component of the Maxwell stress tensor over the
sphere of interest, evaluating the electric fields just outside

(15b)

the sphere of interest. In bispherical coordinates, the z com-
ponent of the force may be written as

2

F ¢ sina [(EgE - |E|%2)cos 6
=& - COS
770 ] (cosh By - cos @) P
+ EgE,, sin fldade, (16)

where 6=cos™![(cos a cosh B;—1)/(cosh B, —cos a)].

We conclude with one remark. The statements up to Eqgs.
(15a) and (15b) can be viewed as either in ST or cgs units. If
SI units are employed and we have vacuum outside the
spheres, g is the permittivity of free space, and if cgs units
are used, g, is unity. The form in Egs. (15a) and (15b) is
valid in only SI units, as written. We turn next to a discussion
of the numerical results we have obtained, within the above
framework.
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III. RESULTS AND DISCUSSION

In this section, we present a series of calculations which
explore issues related to the collective mode spectrum of two
dissimilar metallic nanospheres and their influence of the
response characteristics of the system. We find adequate con-
vergence if the hierarchy of equations derived above is ter-
minated at the value [=1,,,,~40. It will be apparent from the
results we present that the dipole approximation sometimes
used to model interactions between two nearby spheres is
quite inadequate. The dipole approximation is valid only if
the separation between nearby spheres is large compared to
their radius, as noted above. When they are in close proxim-
ity to each other, high order multipoles enter in an essential
manner.

In Fig. 2, to illustrate the influence of size mismatch on
the nature of the collective modes of a system of two
spheres, we show the frequency of the lowest lying collec-
tive plasmon modes of the pair as a function of the separa-
tion between the poles of the two spheres. Both spheres are
taken to be Ag, and the radius of one is fixed at 30 nm while
that of the second is varied. The solid lines show the behav-
ior of the low lying m=0 modes, while the dashed lines are
the lowest frequency m=1 modes. These curves have been
constructed from the resonant peaks in enhanced field calcu-
lations such as those in Fig. 3. The m=0 resonances are
excited by an external field parallel to the line between the
centers of the spheres, and the m=1 modes are excited when
the field is perpendicular to this line, as we have seen in Sec.
11

We see that as the radius R, increases, the frequency of
the low lying modes decreases in a monotonic manner. The
Mie resonance of the isolated Ag sphere, which is the lowest
lying collective plasmon mode of the isolated sphere (this is
the /=1 mode), is shifted down into the visible range of
frequencies from the near ultraviolet by virtue of the inter-
action between the spheres.

In Fig. 3, for two spheres separated by 2 nm, we show the
frequency variation of the enhanced fields that are realized
for three cases. All calculations are for two Ag spheres; one
(sphere 1) has radius of 30 nm and the second (sphere 2)

with radius R, indicated. We show the value of r=|é 1Ey)?
with E, the incident field. In Fig. 3(a), we show results for
the case where the incident field is parallel to the line be-
tween the sphere centers, and in Fig. 3(b), the incident field

b}

is perpendicular to the line between centers. The field E is
calculated at the position on the 30 nm sphere where the field
enhancement is largest. In Fig. 3(a), as we shall see, the field
is largest at the pole of sphere 1 that is closest to sphere 2. In
Fig. 3(b), the point of maximal field enhancement is removed
a bit from this pole. Notice that, on the whole, the maximum
values of the enhanced fields are realized for the case where
sphere 2 has the radius of 50 nm. Below the first collective
mode peak just above 3 eV, we see that the enhanced fields
are larger than for two identical spheres for the case where
sphere 2 has radius 50 nm. In Fig. 3(a), at the highest fre-
quency collective mode resonance, above 3.4 eV, the ratio r
is about an order of magnitude larger when R, is 50 nm than
for the case where the two spheres are identical. If we have

PHYSICAL REVIEW B 77, 045416 (2008)

=== R2=50 nm

3 3.1 3.2 3.3 3.4 3.5
(a) ® (ev)

= == R2=30nm
R2 =50 nm

2

Z/EO
S(AJ

E|
=
(@]

3.4 3.5

FIG. 3. (Color online) The frequency dependence of the en-
hanced fields realized for two Ag spheres separated by 2 nm. The
radius of one sphere is 30 nm, and the second assumes the value
indicated. The fields are calculated at the point on the 30 nm sphere
where the enhanced field assumes it maximum value. See the dis-
cussion in the text for more details. In (a), we have the external field
parallel to the line of sphere centers and in (b) perpendicular to this
line.

SERS in mind, the Raman signal scales as 2. Thus, if maxi-
mal enhancement is realized for a molecule located in the
gap between the two spheres, the SERS signal would be
roughly 100 times stronger when R;=30nm and R,
=50 nm, compared to the case of two identical spheres with
R{=R,=30 nm. Clearly, the largest field enhancements are
obtained for the case where the applied field is parallel to the
line between the centers of the spheres. Of course, in both
Figs. 3(a) and 3(b), the peaks are produced by excitation of
collective plasmon resonances.

One interesting feature of Fig. 3(b) is the following. When
the two spheres have identical radii, we have a selection rule
operative regarding which collective modes can be excited
by a laser field perpendicular to the line between the sphere
centers, and also for the case where the exciting field is par-
allel to the line between the sphere centers. First, for any
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FIG. 4. (Color online) For a sphere whose radius is 30 nm and a
sphere whose radius is 50 nm, we show the enhanced electric field
as a function of distance between the two poles of the sphere. The
exciting field is 3.46 eV, on resonance with the feature that pro-
vides the largest enhancement of the field, and the two poles are
separated by 5 nm. The exciting field is parallel to the line between
the centers of the two spheres.

value of the azimuthal quantum number m, we have collec-
tive modes which lie below the Mie resonance of the isolated
sphere and modes which lie above. If m is even (odd), the
electrostatic potential associated with the lower branches is
odd (even) under reflection through the line of centers, and
for the upper branches, the potential is even (odd) under
reflection through this plane. If the laser field is perpendicu-
lar to the line of centers, then we have seen from Sec. II that
it is the m=1 modes that are excited by the laser field, and
the modes which have the appropriate symmetry are those
which lie above the Mie resonance of the isolated sphere.
Thus, in Fig. 3(b), we see no resonances in the enhanced
field below 3.5 eV for the case where R;=R,=30 nm. How-
ever, when the spheres are dissimilar, the selection rule just
discussed breaks down, and in Fig. 3(b), we see a sequence
of resonant peaks in the region 3.1-3.5 eV. These have ori-
gin in excitation of the modes which lie below the Mie reso-
nance, and the structures appear by virtue of the breakdown
of the selection rule appropriate to identical spheres. A con-
sequence of the breakdown of the selection rule is that much
larger enhanced fields can be realized in the spectral region
illustrated when the spheres are dissimilar, compared to the
case of identical spheres. The effect on SERS of the break-
down of the selection rule is very dramatic if one appreciates

that the SERS intensity scales as |E/ Eo|*. A comparison be-
tween Figs. 3(a) and 3(b) shows that for perpendicular exci-
tation, one can realize field enhancements quite comparable
to those found when the exciting field is parallel to the axis
of symmetry.

We comment next on the spatial distribution of the field
enhancement. In Fig. 4, for two spheres, one with radius of
30 nm and the second with 50 nm, we show the variation of
the ratio r defined above as one moves along the line of
centers between the two spheres, from the “south pole” of
the 30 nm sphere where the enhancement is maximum to the
“north pole” of the larger sphere. The calculation assumes
that the separation between the two poles is 5 nm and that
the exciting field is parallel to the line between the two cen-
ters. The photon energy has been taken to be 3.46 eV, where
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FIG. 5. (Color online) The angular dependence of the enhanced
field near the pole of the 30 nm sphere where maximum field en-
hancement is realized. Both spheres are Ag, the separation between
their poles is 1 nm, and the photon frequency is 3.1 €V. In (a), the
exciting field is parallel to the axis between the centers of the two
spheres, and in (b) and (c), the field is perpendicular to this axis.

one realizes the largest resonant enhancement. One sees that
the field is enhanced quite strongly along the entire line.

In Fig. 5, we illustrate the angular variation of the field
intensity near the pole of the sphere whose radius is 30 nm.
In Fig. 5(a), the exciting field is parallel to the line between
the centers of the two spheres, and in Figs. 5(b) and 5(c), the
exciting field is perpendicular to the line between centers.
The distance between the two spheres is 1 nm, and the ex-
citing field consists of photons with the energy of 3.1 eV. We
see that in the first case, the maximum value of the field is
right at the pole, whereas when the exciting field is perpen-
dicular to the centers, there is actually a sharp dip in intensity
at the pole, and the maximum field is offset a bit from the
pole. Quite clearly, a dipole picture is unable to describe
fields with this character, since high order multipoles must be
included to describe such highly localized fields.

So far, our discussion has focused it attention on pairs of
Ag spheres and the influence of differences in radii. It is
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FIG. 6. (Color online) The maximum enhanced fields realized
for two spheres whose radius is 30 nm. In one case, we have a pair
of Ag spheres; in a second one, we have one Ag sphere and one Au
sphere; and in the third, we have two Au spheres. The poles of the
spheres are separated by 5 nm, and the exciting field is parallel to
the line of centers between the two spheres.

interesting also to examine the case where the spheres are
fabricated from two different materials. In Fig. 6, we com-
pare the maximum enhanced fields realized when one sphere
is fabricated from Au and when both spheres are fabricated
from Au. Both spheres have identical radii, 30 nm, and the
separation between the two spheres is 5 nm in these calcula-
tions. The exciting field is parallel to the axis of symmetry
for these calculations. When we compare the case where one
sphere is fabricated from Au to the case where both spheres
are Ag, we see that the maximum enhanced field realized is
roughly the same. However, the low frequency structure in
the doublet one sees for the Ag/Ag case is absent. The Mie
resonance of an isolated Au sphere lies much lower in fre-
quency than that for Ag, in the vicinity of 2.2 eV. Because of
the higher intrinsic dissipation in Au, it is quite a broad struc-
ture, with the consequence that the enhanced fields one can
realize are much smaller. In Fig. 6, one can appreciate this;
there is quite a broad structure for the Au pair near 2 eV, and
the field enhancements realized are quite small compared to
Ag pairs.

The calculations in Fig. 6 extend to higher frequencies
than our earlier results. We note the striking minimum just
above 3.5 eV for the two Ag sphere case. When the spheres
are driven by a frequency above the collective resonance
frequencies, the field generated by charge motions in the
spheres is roughly 180° out of phase with the driving field,
thus producing the minimum. As we move to still higher
frequencies, we enter the regime of interband transitions and
the physical picture is not so simple.

We now turn to our calculations of the laser-induced force
between the two spheres. We begin by referring the reader to
the discussion in our previous publication.'* In Fig. 2 of Ref.
14, we show the variation with distance between the poles
the laser-induced force between two identical Ag spheres and
between one Ag sphere with radius 30 nm and a second Ag
sphere with radius 60 nm. This is done for two photon ener-
gies, and the figure refers to the case where the exciting field
is parallel to the line between the centers of the spheres. It is
the case that for two identical Ag spheres, the force is very
much smaller by 2 or 3 orders of magnitude for photon en-
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FIG. 7. (Color online) The dependence on photon frequency of
the magnitude of the laser-induced force between two Ag spheres
whose poles are separated by d=1 nm. The spheres have radii of 30
and 50 nm, respectively. The solid curve is the force induced by an
exciting field parallel to the line between the centers of the spheres,
and the dotted curve is for an exciting field perpendicular to the line
between the centers of the spheres. The incident laser power has
been taken to be 10 mW/um?.

ergies below ~3.5 eV, if the exciting field is applied perpen-
dicular to the line of centers. This is because there are no
collective modes below the isolated sphere Mie resonance
whose symmetry allows them to be excited by the exciting
field.

However, if one considers two spheres of dissimilar ra-
dius, the breakdown of the selection rule as discussed above
allows a laser field applied perpendicular to the line of cen-
ters to excite the low lying collective modes, as we have
seen. A consequence is that for this case, one can realize
laser-induced forces comparable in strength in perpendicular
excitation to those realized in parallel excitation. We illus-
trate this in Fig. 7.

In the examples discussed in Ref. 14, and for the calcula-
tions displayed in Fig. 7 of the present paper, the laser-
induced force is attractive. It is interesting that for the case of
excitation with field perpendicular to the line between the
centers of the sphere, it is possible to realize repulsive forces
between the spheres, under suitable circumstances. The force
is attractive for the m=1 curve in Fig. 7, between the zeros
near 2.9 and 3.55 eV, and is repulsive in the range of rest
frequencies. We show another example of this behavior in
Fig. 8. The dotted curve shows, for perpendicular excitation,
the magnitude of the laser-induced force between two Ag
spheres as a function of the distance between their poles.
One sphere has radius of 30 nm and the second 50 nm, and
the photon energy is taken to be 3.1 eV. We see collective
mode resonances with origin in the breakdown of the selec-
tion rule for identical spheres. Notice, in the dotted curve, the
zero near d=2 nm. Below this zero, the laser-induced force
is attractive, while above it the force between the spheres is
repulsive. The solid line in the upper right portion of the
figure is the strength of the van der Waals attraction between
the spheres, calculated as discussed in Ref. 14. Unfortu-
nately, in the interesting regime where the laser-induced
force is repulsive, its magnitude is quite small compared to
the van der Waals attractive force. Of course, the laser-
induced force scales linearly with laser power, so with a
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FIG. 8. (Color online) Calculations of the dependence of the
magnitude of the laser-induced force between two Ag spheres for
the case where the exciting field is applied perpendicular to the line
between their centers. One sphere has radius of 30 nm, and the
second the radius indicated. The laser power has been taken to be
10 mW/um?, and the photon energy is 3.1 eV. For the case of
dissimilar spheres, the force is repulsive rather than attractive for
separations greater than 2 nm, while for the case of the two identi-
cal spheres, it is repulsive above the separation of 0.2 nm.

suitable increase of laser power over the value used in these
calculations (10 mW/um?), it may be possible to boost the
repulsive force up to the point where it overwhelms the van
der Waals attraction. With cw excitation, this would lead to
heating and various complications. However, through use of
intense short pulses, it seems reasonable to us that one may
boost the force to the point where it exceeds the van der
Waals attraction. The solid curve in Fig. 8 is a calculation of
the magnitude of the force for two identical Ag spheres
whose radii are 30 nm. The collective mode resonances are
absent, but now the force is repulsive for all pole separations
which exceed 0.2 nm.

We conclude this section with calculations of the laser-
induced force between a Ag sphere and a Au sphere placed
nearby. We saw earlier that even though Au is quite lossy,
one can realized enhanced fields for the Ag/Au combination
comparable to those realized for the Ag/Ag case. This is the
case as well for the laser-induced force. We illustrate this in
Fig. 9 for the case of a laser field applied parallel to the line
of centers between the spheres.

IV. CONCLUDING REMARKS

In this paper, we have presented a series of calculations of
enhanced fields and laser-induced forces realized in the vi-
cinity of two metallic spheres placed in close proximity to
each other. The emphasis is on the case where the two
spheres are dissimilar, either with different radii or composed
of different materials.

If the two spheres are identical, then the enhanced fields
and the magnitude of the laser-induced force between them
are much larger for laser fields applied parallel to the line
between the centers than for the case when the field is per-
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FIG. 9. (Color online) We provide a comparison between the
laser-induced force between two Ag spheres and between a Ag
sphere and a Au sphere. One sphere has radius of 30 nm, and the
second 50 nm; the Au sphere is the larger in the Ag/Au example.
The exciting field is applied parallel to the line between the centers,
the separation between the poles of the two spheres is 1 nm, and the
laser power has been taken to be 10 mW/ um?.

pendicular to the line between the centers. This remark, for
the ideal material Ag, applies to frequencies in the visible
range, which lie below the Mie resonance of the isolated Ag
sphere. The reason for this is that symmetry forbids excita-
tion of the relevant collective plasmon modes, for the case of
perpendicular excitation. For dissimilar spheres, our calcula-
tions show that the selection rule breaks down quite dramati-
cally, and we then find enhanced fields and laser-induced
forces of comparable magnitude can be realized for both ge-
ometries.

The calculations here and those presented in Ref. 14 sug-
gest that for modest laser powers, exploitation of the collec-
tive plasmon resonances can result in laser-induced forces in
excess of the van der Waals force. It is the case as well that
for perpendicular excitation, the laser-induced force can be
repulsive for suitable geometries and frequency regimes.
These results, in our mind, are of potential interest in regard
to laser manipulation of nanoparticle structures. The use of
pulsed laser sources will allow powers greatly in excess of
those utilized in the calculations reported here, so one has the
possibility of entering the regime where the total force be-
tween two spheres (van der Waals+laser-induced force) is,
in fact, repulsive.

It would be of fundamental interest also to see measure-
ments of the laser-induced force between two spheres. This
is, in principle, a physically accessible quantity which may
be used as a test of calculations such as ours. If laser-induced
forces comparable to those calculated are indeed realized,
then one can infer that the very large enhanced fields calcu-
lated are realized as well, near the two closest poles of the
spheres. Such a measurement would allow one to make di-
rect inferences regarding the strength of the enhanced fields
realized with real materials. We can envision measurement of
the laser-induced force between a sphere attached to an
atomic force microscope tip and a suitable plane surface.
Quite clearly, the optimum material is Ag for both the sphere
and the substrate.

While our discussion is confined to the case of a pair of
nanospheres, it is also of great interest to explore related
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issues for linear arrays, finite and infinite in nature, and also
for other arrangements of nanospheres. Once again, we direct
the reader to the formalism developed and implemented in
Ref. 10. This is a exact real space formulation, within the
electrostatic approximation employed here, of the response
of arrays of spheres. This method can be applied to a diverse
range of problems in this area.
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